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Abstract

Background
One of the most overlooked, yet critical components of a whole genome sequencing
project is the submission and curation of the data to a genomic repository, most
commonly NCBI. While large genome centers or genome groups have developed
software tools for post-annotation assembly filtering, annotation, and conversion
into NCBI’s annotation table format, these tools typically require back-end setup
and connection to an SQL database and/or some knowledge of programming (Perl,
Python) to implement. With whole genome sequencing becoming commonplace,
genome sequencing projects are moving away from the genome centers, and into
the ecology or biology lab, where much less resources are present to support the
process of genome assembly curation. To fill this gap, we developed software to
assess, filter, transfer annotations, and convert a draft genome assembly and an-
notation set into NCBI annotation table (.tbl) format, facilitating submission to
NCBI Genome Assembly database. This software has no dependencies, is compat-
ible across platforms, and utilizes a simple command line to perform a variety of
simple and complex post-analysis, pre-NCBI submission WGS project tasks.
Findings
The Genome Annotation Generator is a consistent and user-friendly bioinformatics
tool that can be used to generate a .tbl file that is consistent with the NCBI sub-
mission pipeline.
Conclusions
The Genome Annotation Generator achieves the goal of providing a publicly avail-
able tool that will facilitate the submission of annotated genome assemblies to NCBI.
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It is useful for any individual researcher or research group who wishes to submit a
genome assembly of their study system to NCBI.

Keywords: Genome curation; annotation; and whole-genome sequencing project

1 Introduction

While ever-improving sequencing technology and assembly software enable the collection
of raw sequences for genome assembly and structural annotation, further steps need to
be taken to ensure the quality and completeness of a WGS project for submission to the
National Center for Biotechnology Information (NCBI) or other data repositories [32]. To
submit a genome to the NCBI for curation, it must be converted to the NCBI annotation
table format (.tbl). With a genome assembly project consisting of thousands of sequences
demarcated by hundreds of thousands of structural annotations, this task clearly requires
automation. However, there is currently no freely available tool which performs rapid and
controlled conversion of a genome assembly and associated structural annotations into a
.tbl format in addition to allowing for editing, modification, and revision of the content of
the project. Moreover, the typical assembly and draft annotation contains some degree
of questionable or erroneous data which requires correction or omission. It may also
be desirable to add functional annotations to the submission and integrate results from
InterProScan, BLAST homology to curated databases, or ontology terms generated by
other tools [33, 5, 17].

The traditional approach used to address these problems is to use Linux command
line tools or write custom scripts which modify and filter the genome using a scripting
language such as Perl or Python [4, 28, 12] or large scale genomic database systems [20].
This method may not be easily or readily reproducible, or it may be entirely beyond the
ability of an investigator who has less familiarity with generating custom scripts de novo.
Even amongst those researchers who use best practices to write clean, well-tested, and
reusable scripts to accomplish these tasks, doing requires a large amount of duplicated ef-
fort. For this reason, the Genome Annotation Generator (GAG) was written to provide a
straightforward and consistent tool for addressing the most common errors in genome as-
semblies, adding functional annotations from disparate sources, and producing an NCBI
submission-ready annotation .tbl file. In addition, the software provides a means for
integrating existing functional annotations and marking annotations that require man-
ual curation or review. All of these tasks are done through an intuitive command line
program, a friendly user-interface, and has no required dependencies or packages. The
program GAG facilitates the submission of whole genome sequencing (WGS) projects
to NCBI as well as provide a standardized utility and workflow that fosters consistency
between projects. Due to emerging genome sequencing initiatives such as the 5,000 Insect
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Genomes Initiative (i5K), the Plant Genome Initiative, and Genome 10K [22, 21], many
independent research groups which are not specialized in genome annotation and analysis
are generating large genomic datasets and performing genome sequencing projects within
their lab. This program can assist in ensuring quality and consistency of data for new
genome biologists.

2 Overview

The GAG program is a command line python program, written in python 2.7 and re-
quiring no additional outside programs or packages to run. The user directs the program
to the genome .fasta file and a .gff3 file containing structure annotations. In addition, a
number of flags can be used to fix possible errors, flag or remove features based on selected
criteria, add functional annotations, trim regions of the genome out of the assembly, and,
of course, write the genome to NCBI .tbl file format. In addition, changes made to the
genome annotation, functional annotations added, or flags requesting manual review are
also annotated back to the GFF3 structural annotation file, and the original fasta file
is corrected as needed. When the user issues commands to modify the genome, e.g. to
remove short introns, the statistics will display two columns, representing the original
and modified genomes. This allows for stepwise and documented filtering and review
to occur, and interactions between GAG and visual genome review tools (e.g. Artemis,
Apollo, Gbrowse) [31, 25, 16, 27, 24].

3 Methods

As an example, we consider a possible work-flow for a user wishing to prepare a genome
for submission to the NCBI Eukaryotic WGS Database. She has a scaffolded genome
assembly produced by one of many whole genome assemblers [2, 13, 26] in .fasta file
format and a corresponding GFF3 feature file [8, 7] containing structural annotations
resulting from an automated annotation pipeline or predictors such as Maker, Evidence
Modeler, Jigsaw, or others e.g. [3, 15, 1, 14, 29, 30, 6, 9]. The approach would be to
first possibly generate functional annotations of predicted genes if this is desired, using
whatever approach the user is interested in, and then using the genome and annotations
with GAG. After using GAG to remove or flag features of interest, she then may then
further investigate flagged features in a genome browser by loading the output of GAG,
edit, and then perform further filtering in GAG, and iterate through this process until
a final draft genome product is generated. Finally GAG writes a NCBI table file, on
which tbl2asn is run for submission to NCBI. This may identify regions of the genome
that need to be trimmed, due to possible adapter contamination in the genome, or low
quality sequence. Any errors generated by tbl2asn can then be corrected in GAG, the
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genome trimmed, until an error free submission is generated.
To use GAG, she creates a folder containing the genome files (or links to them)

and runs gag.py from the terminal, with the .fasta and .gff3 files. GAG will write a
statistics file, containing infomraiton on the number of each feature type, lengths, and
other information that may be useful for the submitter. In our experience, automated
genome annotation software frequently produces assemblies containing introns as short
as 1 base pair long; if any such features are present, GAG will detect them. It is common
for NCBI to request that genes containing short introns be removed or modified, and
GAG can be used to do this. To address these short introns, the user simply applies
flag -ris (Remove_Intron_Shorter_Than) with a value of 10. GAG will discard any
mRNA containing an intron shorter than the minimum of ten. A comparison of the
genome content before and after removal is printed to the .stats file. If she instead wishes
to only flag features that meet this criteria and not remove them, alternatively the -fis
(Flag_Introns_Shorter_Than) flag could be used, which instead adds a GAG_FLAG
feature to the attributes column of the .gff3 file describing the reason for flagging, allowing
manual review of flagged features in a genome browser. GAG will automatically update
all parent and child features (gene or CDS entries) to reflect removal of mRNA features.
A list of available flag or removal options are listed in Table 1.

Another review for submission might be that all coding regions be a minimum length.
For this example we use 150 base pairs in length, which is suggested by NCBI [10, 11].
The to add this additional level of filtering, a second flag can be used: -rcs 150, to
Remove_CDS_Shorter_Than 150 bp. When the genome is written to the output folder,
GAG will write a file called genome.removed.gff containing all the features left out of the
final version.)

GAG supports two straightforward correction, or fix tools. If the user’s GFF3 file
does not explicitly indicate the presence of start and stop codons, or if there is reason to
believe there are errors in ORF prediction, GAG can calculate start and stop locations.
The user simply issues the command with the flag –fix_start_stop and these features
will be added to the GFF3 file, and their existence noted in the table file. A second
issue that can arise in a draft genome assembly is for a contig or scaffold to have a string
of ambiguous bases (N’s) at the very beginning or end of the contig. These should be
removed from the assembly, and can be using the –fix_terminal_ns flag, as they can be
mis-interpreted as scaffold gaps. Removing these regions from the genome though, will
disrupt the parity between coordinates in the .fasta genome file and the .gff3 annotation
file. GAG will automatically update coordinates in the .gff3 file to reflect any regions
removed from the sequence file. In addition, it may be identified that regions of the
genome may be contaminated with microbial, vector, or sequencing adapter sequence,
particularly identified during the "contaminate screen" performed during execution of
tbl2asn and NCBI quality checking. A .bed formatted file can be supplied with teh -
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trim flag, containing regions of the assembly to exclude, either ranges within a contig or
scaffold, or an entire scaffold. GAG will update both the .fasta and .gff3 files so that
coordinate are still synchronized. This is a particularly difficult operation to perform
without a specialized tool.

At present, GAG has simple commands to remove or flag introns, exons, coding regions
and genes based on minimum or maximum lengths, which will also edit or remove any
parent or child feature from the annotation file so as not to create incomplete feature
annotations. It can also remove features from a list, which is useful for cases where
a genome submission is rejected and a list of invalid mRNAs and genes provided. In
addition, all discarded features are retained in a “genome.removed.gff” file and the entire
editing session is documented so that the user can retain the filtering criteria used on the
particular dataset.

GAG supports two methods to add functional annotations to a genome. First, it can
read an annotated GFF3 file containing gene names, protein products, cross-references
to databases, and ontology terms following GFF3 qualified nomenclature in the attribute
column of the GFF3 file [19, 18, 23]. Any annotations present will be automatically carried
over to the NCBI feature table file. For users with annotations from another source, GAG
can read them from a simple tab-delimited file. The annotations supported by the current
version of GAG are Name (for genes), Dbxref, Ontology_term and product (for descriptive
mRNA products). These are also written to a new GFF3 file, so GAG can be utilized as
a tool to also functionally annotate a GFF3 file. Detailed instructions for running GAG,
examples, as well as formats and conversion tools for functional annotations are available
on the GAG software website webpage: http://genomeannotation.github.io/GAG/.

4 Implementation

GAG is written in Python 2.7. It has no dependencies beyond the standard library. The
program is modular, abstracting biological concepts such as Sequence, Gene and CDS
into classes which may be incorporated into other software tools. In addition, the code
is covered by a suite of unit and integration tests, allowing developers to modify or add
to the code base with reduced risk of introducing errors. It should be easily executable
by the novice programmer, but also powerful enough to be implemented within robust
genome processing pipelines.

5 Conclusion

GAG can be easily expanded in the future to support more specific needs of researchers,
less common annotation types, and integrate conversion of common functional annotation
output formats (e.g. InterProScan, BLAST, Blast2Go) for addition to NCBI annotation
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table formats. Currently, GAG is an intermediate, but critical tool, between a simple
format conversion tool and more sophisticated annotation editors. In future developments
of GAG, we plan to allow the integration of multiple lines of evidence supporting gene
models to help users discriminate apparently high quality annotations from annotations
with little support or possible errors. This could rapidly improve and standardize manual
annotation efforts in systems and user groups that are not integrated into genome center
annotation pipelines.
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